二次函数求表达式(求二次函数表达式的三种方法)
- 开发语言
- 2023-08-13
- 82
其实二次函数求表达式的问题并不复杂,但是又很多的朋友都不太了解求二次函数表达式的三种方法,因此呢,今天小编就来为大家分享二次函数求表达式的一些知识,希望可以帮助到大家,...
其实二次函数求表达式的问题并不复杂,但是又很多的朋友都不太了解求二次函数表达式的三种方法,因此呢,今天小编就来为大家分享二次函数求表达式的一些知识,希望可以帮助到大家,下面我们一起来看看这个问题的分析吧!
二次函数的表达式是什么意思
一般式:y=ax+bx+c(a≠0)
顶点式简洁版:y=a(x-h)+k(a≠0)定点坐标为(h,k)
详尽版:y=a[x+b/(2a)]+(4ac-b)/4a(a≠0)定点坐标为(-b/(2a),(4ac-b)/4a)
两点式(也叫零点式或交点式):y=a(x-x1)(x-x2)(a≠0),其中x1,x2为该二次函数与x轴的交点的横坐标.
二次函数的表达式算式怎么算
二次函数的基本表示形式为y=ax2+bx+c(a≠0)。
一般地,把形如y=ax2+bx+c(a≠0)。(a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最大(小)值=k.有时题目会指出让你用配方法把一般式化成顶点式。
扩展资料:
二次函数的三种表达式
一般式:y=ax2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]。
注:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
二次函数直线的公式
y=ax2+bx+c(a≠0)
二次函数的基本表示形式为y=ax2+bx+c(a≠0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数表达式为y=ax2+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
扩展
二次函数求根公式法
推导一下ax^2+bx+c=0的解。移项,ax^2+bx=-c两边除a,然后再配方,x^2+(b/a)x+(b/2a)^2=-c/a+(b/2a)^2[x+b/(2a)]^2=[b^2-4ac]/(2a)^2两边开平方根,解得x=[-b±√(b2-4ac)]/(2a)。
二次函数求根公式
二次函数有很多种,ax^2+bx+c=0,(a不等于0,b^2-4ac>0)的二次函数只是其中的一种,其解是x=[-b±(b^2-4ac)^(1/2)]/2a,若b^2-4ac<0,则函数将产生虚根,x=[-b±i(b^2-4ac)^(1/2)]/2a式中i为虚数。
函数ax^2+bx+c+dy^2+ey+fxy+......=0,(未知数的最高项次不全为0)叫做多项式函数;
(ax^2+bx+c+dy^2+ey+fxy+......)/(px^2+qx+r+my^2+ny+sxy+......)=g,(未知数的最高项次不全为0.分母不为0)叫做分式函数;
(ax^2+bx+c+dy^2+ey+fxy+......)^(1/2)=m,(未知数的最高项次不全为0)叫做无理函数。
二次函数方程关系
特别地,二次函数(以下称函数)y=ax2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
?
二次函数对称轴公式
x=-b/2a
二次函数的基本表示形式为y=a(x的平方)+bx+c(a不等于0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数是一个二次多项式或单项式,它的基本表示形式为y=ax+bx+c(a≠0)。二次函数的表达式有y=ax^2+bx+c。它的对称轴是x=-b/a。y=a(x+h)+k。它的对称轴是x=-h。y=a(x-x1)(x-x2)+h。它的对称轴是x=(x1+x2)/2。
二次函数在初升高升学考试中频频出现,可以说是数学大题中的压轴题。二次函数题考查的知识点多,综合性较强,解题灵活多变。若P是抛物线第X象限上一动点,过点P做PM⊥x轴,PM交一次函数于点Q,求三角形面积最大值;设点M在抛物线的对称轴/y轴上,当三角形MXX是等腰三角形/直角三角形/等腰直角三角形/相似三角形时,求点M的坐标。
对称轴求法
y=ax^2+bx+c(a≠0)
当△≥0时:
x^1+x^2=-b/ax^1=x^2
对称轴x=-b/2a
当△<0时:
a>0时y>0,a<0时y<0,y≠0
ax^2;+bx+c-y=0△≥0
对称轴x=-b/2a
y=ax^2+bx+c关于x轴对称:
y变为相反数,x不变:
y=a(-x)^2+b(-x)+c
即:y=ax^2-bx+c
求y=ax^2+bx+c关于y轴对称也是如此
若ab同号,对称轴在y轴左侧,
若ab异号,对称轴在y轴右侧。
二次函数关于x表达式怎么求
二次函数解的公式是x=(-b±√(b2-4ac))/2a。二次函数的基本表示形式为y=ax2+bx+c(a≠0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数函数表达式类型题怎么算
二次函数的解析式有三种基本形式:1、一般式:y=ax2+bx+c(a≠0)。
2、顶点式:y=a(x-h)2+k(a≠0),其中点(h,k)为顶点,对称轴为x=h。
3、交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。4.对称点式:y=a(x-x1)(x-x2)+m(a≠0)
求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:
1、若给出抛物线上任意三点,通常可设一般式。
2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。
3、若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式。
4.若已知二次函数图象上的两个对称点(x1、m)(x2、m),则设成:y=a(x-x1)(x-x2)+m(a≠0),再将另一个坐标代入式子中,求出a的值,再化成一般形式即可。
如果你还想了解更多这方面的信息,记得收藏关注本站。
本文链接:http://xinin56.com/kaifa/3432.html