当前位置:首页 > 开发语言 > 正文

证明方程xfx存在唯一的一个解的必要与充分条件

证明方程xfx存在唯一的一个解的必要与充分条件

线性方程组有解的充分必要条件是什么? 1、行的主元素个数等于未知数的个数:如果一个线性方程组有n个未知数,而行的主元素的个数也为n,那么该方程组有唯一解。 行的主元素个...

线性方程组有解的充分必要条件是什么?

1、行的主元素个数等于未知数的个数:如果一个线性方程组有n个未知数,而行的主元素的个数也为n,那么该方程组有唯一解。 行的主元素个数小于未知数的个数:如果一个线性方程组有n个未知数,而行的主元素的个数小于n,那么该方程组有无穷多个解,即存在多个参数。

2、当线性方程组为非齐次线性方程组时,解唯一的充要条件是对应的齐次线性方程组只有零解。线性方程组是各个方程关于未知量均为一次的方程组(例如2元1次方程组)。对线性方程组的研究,中国比欧洲至少早1500年,记载在公元初《九章算术》方程章中。

3、线性方程组Ax=b有解的充分必要条件是:增广矩阵的秩等于系数矩阵的秩。即r(A,b)=r(A)对有解方程组求解,并决定解的结构。这几个问题均得到完满解决:所给方程组有解,则秩(A)=秩(增广矩阵);若秩(A)=秩=r,则r=n时,有唯一解;rn时,有无穷多解;可用消元法求解。

4、有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。非齐次线性方程组有唯一解的充要条件是rank(A)=n。非齐次线性方程组有无穷多解的充要条件是rank(A)n。

线性方程组有解的必要充分条件是什么?

行的主元素个数等于未知数的个数:如果一个线性方程组有n个未知数,而行的主元素的个数也为n,那么该方程组有唯一解。 行的主元素个数小于未知数的个数:如果一个线性方程组有n个未知数,而行的主元素的个数小于n,那么该方程组有无穷多个解,即存在多个参数。

当线性方程组为非齐次线性方程组时,解唯一的充要条件是对应的齐次线性方程组只有零解。线性方程组是各个方程关于未知量均为一次的方程组(例如2元1次方程组)。对线性方程组的研究,中国比欧洲至少早1500年,记载在公元初《九章算术》方程章中。

线性方程组Ax=b有解的充分必要条件是:增广矩阵的秩等于系数矩阵的秩。即r(A,b)=r(A)对有解方程组求解,并决定解的结构。这几个问题均得到完满解决:所给方程组有解,则秩(A)=秩(增广矩阵);若秩(A)=秩=r,则r=n时,有唯一解;rn时,有无穷多解;可用消元法求解。

有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。非齐次线性方程组有唯一解的充要条件是rank(A)=n。非齐次线性方程组有无穷多解的充要条件是rank(A)n。

最新文章