当前位置:首页 > 软件开发 > 正文

mysql优化方案(mysql查询慢的优化方案)

mysql优化方案(mysql查询慢的优化方案)

其实mysql优化方案的问题并不复杂,但是又很多的朋友都不太了解mysql查询慢的优化方案,因此呢,今天小编就来为大家分享mysql优化方案的一些知识,希望可以帮助到大...

其实mysql优化方案的问题并不复杂,但是又很多的朋友都不太了解mysql查询慢的优化方案,因此呢,今天小编就来为大家分享mysql优化方案的一些知识,希望可以帮助到大家,下面我们一起来看看这个问题的分析吧!

php+mysql优化,百万至千万级快速分页mysql性能到底能有多高

百万级别不算多,但是查询必须待条件的,1.表需要加索引,看效果,2对应的查询条件也要加索引看效果。

如何优化Mysql千万级快速分页

两步。

1,垂直分表。拆表,按你的各个应用场景,如微信登录、qq登录,每个应用场景一张表,这张表的字段比原表少,仅仅将该场景用到的字段存进去。

2,水平分表。经过第一部后,将每个子表进行水平拆分,。具体方法,比如手机号登录场景的子表,可按手机号末尾一位取模,再分为10个子表,每个子表数据量百万级,mysql性能差不多可以忍受。对了,别忘建个索引。

总结一下,要达到的目的无非两个:瘦表,单表数据量级不要超过百万级

如何优化MySQL千万级大表

概述

使用阿里云rdsforMySQL数据库(就是MySQL5.6版本),有个用户上网记录表6个月的数据量近2000万,保留最近一年的数据量达到4000万,查询速度极慢,日常卡死,严重影响业务。

老系统,当时设计系统的人大概是大学没毕业,表设计和SQL语句写的不仅仅是垃圾,简直无法直视。原开发人员都已离职,到我来维护,这就是传说中的维护不了就跑路,然后我就是掉坑的那个!!!

方案概述

方案一:优化现有MySQL数据库。优点:不影响现有业务,源程序不需要修改代码,成本最低。缺点:有优化瓶颈,数据量过亿就玩完了。

方案二:升级数据库类型,换一种100%兼容MySQL的数据库。优点:不影响现有业务,源程序不需要修改代码,你几乎不需要做任何操作就能提升数据库性能,缺点:多花钱。

方案三:一步到位,大数据解决方案,更换newSQL/noSQL数据库。优点:没有数据容量瓶颈,缺点:需要修改源程序代码,影响业务,总成本最高。

优化现有MySQL数据库数据库设计

表字段避免null值出现,null值很难查询优化且占用额外的索引空间,推荐默认数字0代替null。

尽量使用INT而非BIGINT,如果非负则加上UNSIGNED(这样数值容量会扩大一倍),当然能使用TINYINT、SMALLINT、MEDIUM_INT更好。

尽量使用TIMESTAMP而非DATETIME。

单表不要有太多字段,建议在20以内。

用整型来存IP。

索引并不是越多越好,要根据查询有针对性的创建,考虑在WHERE和ORDERBY命令上涉及的列建立索引,可根据EXPLAIN来查看是否用了索引还是全表扫描。

应尽量避免在WHERE子句中对字段进行NULL值判断,否则将导致引擎放弃使用索引而进行全表扫描。

值分布很稀少的字段不适合建索引,例如"性别"这种只有两三个值的字段。

字符字段最好不要做主键。

不用外键,由程序保证约束。

尽量不用UNIQUE,由程序保证约束。

使用多列索引时注意顺序和查询条件保持一致,同时删除不必要的单列索引。

使用可存下数据的最小的数据类型,整型<date,time<char,varchar<blob*

使用简单的数据类型,整型比字符处理开销更小,因为字符串的比较更复杂。如,int类型存储时间类型,bigint类型转ip函数。

使用合理的字段属性长度,固定长度的表会更快。使用enum、char而不是varchar。

尽可能使用notnull定义字段。

尽量少用text,非用不可最好分表。

查询频繁的列,在where,groupby,orderby,on从句中出现的列。

where条件中<,<=,=,>,>=,between,in,以及like字符串+通配符(%)出现的列。

长度小的列,索引字段越小越好,因为数据库的存储单位是页,一页中能存下的数据越多越好。

离散度大(不同的值多)的列,放在联合索引前面。查看离散度,通过统计不同的列值来实现,count越大,离散程度越高。

SQL编写

使用limit对查询结果的记录进行限定。

避免select*,将需要查找的字段列出来。

使用连接(join)来代替子查询。

拆分大的delete或insert语句。

可通过开启慢查询日志来找出较慢的SQL。

不做列运算:SELECTidWHEREage+1=10,任何对列的操作都将导致表扫描,它包括数据库教程函数、计算表达式等等,查询时要尽可能将操作移至等号右边。

SQL语句尽可能简单:一条SQL只能在一个cpu运算;大语句拆小语句,减少锁时间;一条大SQL可以堵死整个库。

OR改写成IN:OR的效率是n级别,IN的效率是log(n)级别,in的个数建议控制在200以内。

不用函数和触发器,在应用程序实现。

避免%xxx式查询。

少用JOIN。

使用同类型进行比较,比如用'123'和'123'比,123和123比。

尽量避免在WHERE子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

对于连续数值,使用BETWEEN不用IN:SELECTidFROMtWHEREnumBETWEEN1AND5。

列表数据不要拿全表,要使用LIMIT来分页,每页数量也不要太大。

分区

分区表的数据更容易维护,可以通过清楚整个分区批量删除大量数据,也可以增加新的分区来支持新插入的数据。另外,还可以对一个独立分区进行优化、检查、修复等操作。

部分查询能够从查询条件确定只落在少数分区上,速度会很快。

分区表的数据还可以分布在不同的物理设备上,从而搞笑利用多个硬件设备。

可以使用分区表赖避免某些特殊瓶颈,例如InnoDB单个索引的互斥访问、ext3文件系统的inode锁竞争。

可以备份和恢复单个分区。

一个表最多只能有1024个分区。

如果分区字段中有主键或者唯一索引的列,那么所有主键列和唯一索引列都必须包含进来。NULL值会使分区过滤无效。

所有分区必须使用相同的存储引擎。

分表

分表就是把一张大表,按照如上过程都优化了,还是查询卡死,那就把这个表分成多张表,把一次查询分成多次查询,然后把结果组合返回给用户。

分表分为垂直拆分和水平拆分,通常以某个字段做拆分项。比如以id字段拆分为100张表:表名为tableName_id%100。

但:分表需要修改源程序代码,会给开发带来大量工作,极大的增加了开发成本,故:只适合在开发初期就考虑到了大量数据存在,做好了分表处理,不适合应用上线了再做修改,成本太高!!!而且选择这个方案,都不如选择我提供的第二第三个方案的成本低!故不建议采用。

分库升级数据库

开源数据库会带来大量的运维成本且其工业品质和MySQL尚有差距,有很多坑要踩,如果你公司要求必须自建数据库,那么选择该类型产品。如tiDBpingcap/tidb,CubridOpenSourceDatabaseWithEnterpriseFeatures。

阿里云POLARDB,POLARDB是阿里云自研的下一代关系型分布式云原生数据库,100%兼容MySQL,存储容量最高可达100T,性能最高提升至MySQL的6倍。POLARDB既融合了商业数据库稳定、可靠、高性能的特征,又具有开源数据库简单、可扩展、持续迭代的优势,而成本只需商用数据库的1/10。

阿里云OcenanBase,淘宝使用的,扛得住双十一,性能卓著,但是在公测中,我无法尝试,但值得期待。

阿里云HybridDBforMySQL(原PetaData),云数据库HybridDBforMySQL(原名PetaData)是同时支持海量数据在线事务(OLTP)和在线分析(OLAP)的HTAP(HybridTransaction/AnalyticalProcessing)关系型数据库。

腾讯云DCDB,DCDB又名TDSQL,一种兼容MySQL协议和语法,支持自动水平拆分的高性能分布式数据库——即业务显示为完整的逻辑表,数据却均匀的拆分到多个分片中;每个分片默认采用主备架构,提供灾备、恢复、监控、不停机扩容等全套解决方案,适用于TB或PB级的海量数据场景。

hadoop家族。hbase/hive怼上就是了。但是有很高的运维成本,一般公司是玩不起的,没十万投入是不会有很好的产出的!

我选择了阿里云的MaxCompute配合DataWorks,使用超级舒服,按量付费,成本极低。

MaxCompute可以理解为开源的Hive,提供SQL/mapreduce/ai算法/python脚本/shell脚本等方式操作数据,数据以表格的形式展现,以分布式方式存储,采用定时任务和批处理的方式处理数据。DataWorks提供了一种工作流的方式管理你的数据处理任务和调度监控。

当然你也可以选择阿里云hbase等其他产品,我这里主要是离线处理,故选择MaxCompute,基本都是图形界面操作,大概写了300行SQL,费用不超过100块钱就解决了数据处理问题。

MySQL实现批量插入以优化性能的教程

开启mysql事务,打开MyBatis的DEBUG日志查看执行的SQL,并打印DELETE返回的effectcount

mysql优化教程

MySQL的优化要根据实际业务,并没有什么通用的优化。

其实其他回答都说的很全,

但是我从比较实际的地方说说吧。

第一、开启MySQL的slowLog

slowLog会记录MySQL执行过的慢查询,比较佛系的办法就是让它记录一段时间,

然后查看里面执行的语句。

第二、通过desc的方式来查看慢的原因

比如:SELECT*FROMtblWHEREDate=CURDATE();

你可以通过执行descSELECT*FROMtblWHEREDate=CURDATE();

这个时候Mysql就会显示执行这句sql的计划,

如果你发现是全表查询,这个时候尝试在Date上增加索引,

然后再跑一次DESC,这个时候你就会发现这句语句已经走了索引。

*通常这个办法能解决90%的慢查询问题。

当上面的问题都无法满足到你的时候,

建议可以参考Mysql官方的参数设定,

然后根据业务特性对MySQL进行特定优化。

mysql优化连接数防止访问量过高的方法

这个要看你的这些网站的流量,以及程序对数据库的负载大小所决定,如果程序写的很好,SQL语句注意优化,并且有缓存的话,一般情况下,不会有什么问题,当然还是要取决于你服务器的配置如何,总之不是说单方面可以确定是不是会出问题。

如果出现问题,比如数据库负载过高,那么其它网站肯定会受影响,那就是访问慢,或报连接数过多,或无法接数据库。

好了,文章到这里就结束啦,如果本次分享的mysql优化方案和mysql查询慢的优化方案问题对您有所帮助,还望关注下本站哦!

最新文章