当前位置:首页 > 软件开发 > 正文

复合函数求导公式推导?复合函数怎么求

复合函数求导公式推导?复合函数怎么求

大家好,关于复合函数求导公式推导很多朋友都还不太明白,今天小编就来为大家分享关于复合函数怎么求的知识,希望对各位有所帮助!除法复合函数求导公式除法的求导公式:(u/v ...

大家好,关于复合函数求导公式推导很多朋友都还不太明白,今天小编就来为大家分享关于复合函数怎么求的知识,希望对各位有所帮助!

除法复合函数求导公式

除法的求导公式:(u/v)'=(u'v-v'u)/(v^2)。

求导是数学计算中的一个计算方法,导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。

物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性

复合导数公式

1复合函数如何求导

规则:1、设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);

2、设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x);

1、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠?,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(compositefunction),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。

2、定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。

3、周期性:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+).

4、单调(增减)性的决定因素:依y=f(u),μ=φ(x)的单调性来决定。即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。

复合函数求导怎么算

复合函数求导的方法如下:

总的公式f'[g(x)]=f'(g)×g'(x)

比如说:求ln(x+2)的导函数

[ln(x+2)]'=[1/(x+2)]注:此时将(x+2)看成一个整体的未知数x'×1注:1即为(x+2)的导数。

主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。

复合函数证明方法如下:

先证明个引理:

f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0)

证明:设f(x)在x0可导,令H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0

因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0)

所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f'(x)=H(x0)

所以f(x)在点x0可导,且f'(x0)=H(x0)

引理证毕。

设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)

证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)

又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)

于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)

因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且

F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)

证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)*(du/dx)

证明:因为y=f(u)在u可导,则lim(Δu->0)Δy/Δu=f'(u)或Δy/Δu=f'(u)+α(lim(Δu->0)α=0)

当Δu≠0,用Δu乘等式两边得,Δy=f'(u)Δu+αΔu

但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。

又因为Δx≠0,用Δx除以等式两边,且求Δx->0的极限,得

dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f'(u)Δu+αΔu]/Δx=f'(u)lim(Δx->0)Δu/Δx+lim(Δx->0)αΔu/Δx

又g(x)在x处连续(因为它可导),故当Δx->0时,有Δu=g(x+Δx)-g(x)->0

则lim(Δx->0)α=0

最终有dy/dx=(dy/du)*(du/dx)

复合函数求导公式是如何推导出来的

复合函数求导公式可以用链式法则推导出来,即以复合函数的构成函数为单位,依次求出每个函数的导数,然后将求得的多个导数的乘积即为复合函数的求导公式。

复合函数求导口诀

复合函数求导数,分清楚内层函数与外层函数,设外层函数为u外层函数对u求导数,乘以内层函数对x求导,然后把u还回去。

如果是三层,最外层设为u,中间层设为v,外层对u求导数,乘以中间层对v乘以内层对x求导数。以此类推

复合指数函数如何求导

复合函数有复合函数求导法则。一般地,如果y=f(u),u=v(x)的复合函数,在求y关于x的导函数时,先求y关于u的导函数,求出的结果乘以u关于x的导函数后所得结果即为该复合函数的导函数,比如y=sinx^2的导函数为y=2xcosx就是按照这样的法则求得的

关于本次复合函数求导公式推导和复合函数怎么求的问题分享到这里就结束了,如果解决了您的问题,我们非常高兴。

最新文章